Induction of centrosome amplification and chromosome instability in human bladder cancer cells by p53 mutation and cyclin E overexpression.
نویسندگان
چکیده
Centrosome amplification frequently occurs in human cancers and is a major cause of chromosome instability (CIN). In mouse cells, centrosome amplification can be readily induced by loss or mutational inactivation of p53. In human cells, however, silencing of endogenous p53 alone does not induce centrosome amplification or CIN, although high degrees of correlation between p53 mutation and CIN/centrosome amplification in human cancer can be detected, suggesting the presence of additional regulatory mechanism(s) in human cells that ensures the numeral integrity of centrosomes and genomic integrity. Cyclin E, a regulatory subunit for CDK2 that plays a key role in centrosome duplication, frequently is overexpressed in human cancers. We found that cyclin E overexpression, together with loss of p53, efficiently induces centrosome amplification and CIN in human bladder cancer cells but not by either cyclin E overexpression or loss of p53 alone. We extended these findings to bladder cancer specimens and found that centrosome amplification is strongly correlated with concomitant occurrence of cyclin E overexpression and p53 inactivation but not with either cyclin E overexpression or p53 inactivation alone. Because cyclin E expression is strictly controlled in human cells compared with mouse cells, our findings suggest that this stringent regulation of cyclin E expression plays an additional role underlying numeral homeostasis of centrosomes in human cells and that deregulation of cyclin E expression, together with inactivation of p53, results in centrosome amplification.
منابع مشابه
Low molecular weight cyclin E overexpression shortens mitosis, leading to chromosome missegregation and centrosome amplification.
Overexpression of the low molecular weight isoforms (LMW-E) of cyclin E induces chromosome instability; however, the degree to which these tumor-specific forms cause genomic instability differs from that of full-length cyclin E (EL), and the underlying mechanism(s) has yet to be elucidated. Here, we show that EL and LMW-E overexpression impairs the G(2)-M transition differently and leads to dif...
متن کاملAbsence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification
Women heterozygous for mutations in the breast-cancer susceptibility genes BRCA1 and BRCA2 have a highly elevated risk of developing breast cancer [1]. BRCA1 and BRCA2 encode large proteins with no sequence similarity to one another. Although involvement in DNA repair and transcription has been suggested, it is still not understood how loss of function of these genes leads to breast cancer [2]....
متن کاملSuppression of centrosome amplification after DNA damage depends on p27 accumulation.
The centrosome plays a fundamental role in cell division, cell polarity, and cell cycle progression. Centrosome duplication is mainly controlled by cyclin-dependent kinase 2 (CDK2)/cyclin E and cyclin A complexes, which are inhibited by the CDK inhibitors p21Cip1 and p27Kip1. It is thought that abnormal activation of CDK2 induces centrosome amplification that is frequently observed in a wide ra...
متن کاملIntercellular centrosome number is correlated with the copy number of chromosomes in bladder cancer.
Centrosome amplification, which may accelerate tumor progression through chromosomal instability, is frequently observed in human malignancies. The intercellular relation between the number of centrosomes and chromosomes, however, is poorly understood. Therefore, the relationship between centrosomes and chromosomal copy number in the same cells was investigated in bladder cancer. Centrosomes we...
متن کاملInhibition of Cdk2 activity decreases Aurora-A kinase centrosomal localization and prevents centrosome amplification in breast cancer cells
Centrosome amplification plays a key role in the origin of chromosomal instability (CIN) during cancer development and progression. In this study, MCF-7 breast cancer cell lines harboring abrogated p53 function (vMCF-7DNp53) were employed to investigate the relationship between induction of genotoxic stress, activation of cyclin-A/Cdk2 and Aurora-A oncogenic signalings and development of centro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 64 14 شماره
صفحات -
تاریخ انتشار 2004